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This paper shows that longitudinal and transverse beam cooling rates can be equalized by strong
synchro-betatron interactions on a synchro-betratron sum resonance or in its neighborhood in a general
beam cooling system in circular particle accelerators. This equalizing phenomenon enhances brightness
for large synchrotron radiation sources, permits simultaneous stochastic cooling of a bunched beam in
longitudinal and transverse directions, and allows longitudinal and transverse laser cooling of a relativis-

tic ion bunched beam.

PACS number(s): 41.75.—i

1. INTRODUCTION

Longitudinal beam cooling means damping of synchro-
tron oscillations in a longitudinal plane, while transverse
beam cooling means damping of betatron oscillations in a
transverse plane. In 1958, Robinson [1] showed that the
damping rates of synchrotron and betatron oscillations
cannot be changed by any form of external electromag-
netic fields. Recently Csonka [2] presented a more gen-
eral proof of this theorem. Robinson’s theorem is accept-
able only under the condition of negligible synchro-
betatron interactions.

We have clarified how the synchro-betatron interac-
tions affect the damping rates of the betatron and syn-
chrotron oscillations where there is no coupling between
horizontal and vertical betatron oscillations. We have in-
vestigated strong synchro-betatron interactions which
occur on a synchro-betatron resonance or in its neighbor-
hood due to either a longitudinal kick by an rf electric
field in an accelerating cavity with a finite horizontal
dispersion, or a transverse kick by an rf magnetic field in
a deflecting cavity. Our theory shows that the damping
rates of synchrotron and betatron oscillations can be
changed due to betatron modulation of synchrotron oscil-
lations generated by synchro-betatron interactions so as
to have a tendency to equal each other. This means that
longitudinal and transverse beam cooling rates can be
equalized by synchro-betatron interactions. This equali-
zation of beam cooling rates can be applied to any kind of
beam cooling system. As already known, similar features
can be found in intrabeam scattering [3], where kinetic-
energy transfer between transverse and longitudinal
motions depends on multiparticle dynamics. Contrarily
kinetic-energy transfer by synchro-betatron interactions
is determined by single-particle dynamics. Thus the
equalization of beam cooling rates by synchro-betatron
interactions is independent of particle density and so is
very easily controllable.

In Sec. II, we derive the betatron modulation of the
synchrotron oscillations. In Sec. III, we present effects on
synchrotron and betatron emittances in a general cooling
system. In Sec. IV, we show a particle simulation to sup-
port our theory and discuss some applications of the
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equalization of longitudinal and transverse beam cooling
rates.

II. BETATRON MODULATION
OF SYNCHROTRON OSCILLATIONS

Synchro-betatron interactions are driven by dispersion
in rf cavities, deflecting fields, and so on. In the follow-
ing, we summarize their mechanism of generation.

For synchro-betatron interactions driven by dispersion
in rf cavities, the instantaneous position and angle of the
particle do not change by rf acceleration, but the equilib-
rium orbit of the particle suddenly changes due to the en-
ergy change through the rf acceleration, which leads to
changes of the amplitude and phase of the betatron oscil-
lations. The rf acceleration depends on the longitudinal
position. This means that synchrotron oscillations affect
the betatron oscillations. Furthermore, betatron oscilla-
tions change the orbit length per revolution, which leads
to a change of the longitudinal position. Thus the beta-
tron oscillations also affect the synchrotron oscillations.

For synchro-betatron interactions driven by deflecting
fields, the transverse deflection depends on the longitudi-
nal position of the particle, and thus the synchrotron os-
cillations affect the betatron oscillations. Furthermore,
the rf acceleration depends on the transverse position of
the particle, and thus the betatron oscillations affect the
synchrotron oscillations.

The interactions driven by dispersion in rf cavities
were first analyzed by Piwinski and Wrulich [4]. They
considered the change of the orbit length due to the beta-
tron oscillations, and clarified the sum and difference res-
onance features. The interactions driven by deflecting
fields were first studied by Sundelin [5] in a preliminary
analytical formulation, and later extensively studied by
Suzuki [6] using a canonical perturbation theory. In this
paper, we present our own original method for analyzing
the synchro-betatron interactions. Here we assume zero
chromaticity and negligible synchrotron modulation of
betatron oscillations for a convenient theoretical treat-
ment. Then we first derive betatron modulation of syn-
chrotron oscillations in this section.

Properly we should develop our theory in a dissipative
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system, but a state in which betatron and synchrotron os-
cillations are very slowly damped over a large number of
revolutions permits analysis using a Hamiltonian in a
conservative system. Then we consider the conservative
system initially to describe the betatron modulation of
synchrotron oscillations. The synchrotron oscillations
can be described with a pair of canonical variables (o0,8),
where o is a longitudinal advance in meters from an equi-
librium particle and 8 is a relative energy deviation [7].
Instead of o, for convenience we use the variable ¢
defined as ¢ = —ko /fB,, with B, being the relativistic ve-
locity of the particle and k the wave number of the ac-
celerating field (k =2wf /c, for an accelerating frequency
f and velocity of light c.)

A Hamiltonian H can be developed into a Fourier
series of a betatron phase 6, at a certain longitudinal

point (s =0) to be described as
H=by+ 3 (@,sinn6,+b,cosnb) , (1
n=1
where a,=a,cosnu, —b,sinnyu,, b,=a,sinnpu,

+b,cosnp,, and pu, is the betatron phase advance from 0
to s. Betatron-modulated components of the synchrotron
oscillations 8 and ¢g approximately satisfy the
differential equations

d83
=k 2 (@fsinn 6,+bfcosn 6;) , 2)
ds n—1
d ® —
%=—kb388ﬂ—k S (alsinnB,+b2cosnby) , 3)
n=1

where the superscripts § and ¢ indicate partial derlva-
tives with respect to § and ¢, respectively, and b is a
second partial derivative of b, with respect to . Suppos-
ing that the betatron oscillations are simple damping os-
cillations, Egs. (2) and (3) are integrated to give

8s=k 3 (Afsinn6y+Blcosnb,) , 4)

n=1

¢p=—k 2 [(48+ka,)sinn6,+(B2+kB, )cosnby)] ,

n=1
(5)
where
=¢ A
A=A, +t,Bi—14}, (6)
=¢ A
B!=B,~t,4}~1B}, @
A¢=42C,,—BSS,, , (8)
Br?= AI?SIn +B,?C1n ’ (9)
= s =¢ S—
4,= [‘atds’ = [ blas’

n foa" s’ , B, fob,,ds , (10)
A¢=alds , Bf=blds, (11)
a=8&,+t,B,—1&, , (12)
En =§n_tné\n_%ﬁn ’ (13)
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_ = ..., = N T
a-,,=f0‘b35(An+A,?)ds , B,,=f0b35(B,,+B,‘f’)ds ,

(14)

&,=(b®,at)c,,—(b&¥,b?)s,,
+ByP(4fC,,—BSS,,) , (15)

B,=(b8,a?)s,, +(b%,b¢)C,,
+B3(A4?S,, +BSC,,) , (16)
Af=t,B¢—14?, Bi=—1,4¢—1B}, (17
t, =+cot(mng,) , (18)
B =$blas , (19)
Sw="7t, Cp=1+1, (20)
S =281,Cyp » C2n=C -8%,, (21)
Y=V "To (22)

where ¢, is the fractional part of a betatron tune
(—0.5<g, <0.5), 7, is the damping rate of a betatron
amplitude, and ¥, is the damping rate of a synchrotron
amplitude. The quantities 4% and B? are similarly
defined where the superscripts ¢ are replaced by 6 in Eqgs.
(6)-(11), ﬁds indicates an integration along a closed or-

bit, and the brackets ( , ) indicate a double integral
s
= 'ds , 23
(f,8)=$f [ gds'ds (23)

with f and g as arbitrary continuous functions of s. The
betatron modulations 8 and ¢4 can be used approximate-
ly in a dissipative system as described before.

III. EFFECTS ON SYNCHROTRON
AND BETATRON EMITTANCES

The betatron motions are expressed with a pair of
canonical variables (x,p, ), where x is a transverse dis-
placement and p, is a canonical momentum of x which is
defined as

P
= 2 X
BO Po ’ (24)

with B, as a relativistic velocity, P, as the transverse
kinetic momentum, and P, as the total kinetic momen-
tum [7]. The change of the betatron emittance per revo-
lution, Ae,, can be written as

JoH ,
Asx=¢ ‘ 2¥+B_2( a B, —a,B.)xy
+g—: éy —e, | |ds, (25)

where the prime indicates a derivative with respect to a
longitudinal coordinate s, a, and B, are optical functions
referred to as Twiss parameters, and y=a,x +B,p,.
Equation (25) is averaged over several betatron oscilla-
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tions to give the average change of the betatron emit-
tance per revolution

oH
~2<¢—£ds> . 6)

The kernel of the integral, 0H /96, is developed with
respect to the betatron modulation of synchrotron oscil-
lations to give

(AEX )(;:

9 3 n(GI+Gl8y+ Gl @7

=1
where

G, =a,cosn0,—b,sinnf, , (28)

G? and G¢ indicate partial derivatives of G? with respect
to 8 and ¢, respectively. The term G? is integrated over
one revolution to become zero. Taking only the first term
(n =1) as a main term, Eq. (26) becomes

(Ae,)g=—2PTds , (29)
where

Lo=(G}8;+G¢¢p)y, (30)

G%=a’cosf,—bSsinb, , 31

G¢=atcosf,—b?sinb, . (32)

Using the main term with n =1 of Egs. (4) and (5), which
are the expressions of betatron modulations of synchro-
tron oscillations, we obtain

(Ag, )p=—2¢,a(14+2tS,—C,)
+2e,b[1C,+1S, +H(T—1)S,—1C,]
—2€,Vyd » (33)
where
2e,a=k(ASB?— A¢BY)
+kAA$(bE,b®)—B(at, b)), (34)
2e,b=—k*B?®[(A¢)?+(B$)?], (35)
t =cot(mq,) , (36)
T=1>+1, (37)

S1s> Cin> San» and C,, for n =1 are replaced by S,, Cy,
S,, and C,, respectively. Here a dissipative damping
effect is introduced as the last term in Eq. (33), where v,
is the damping rate of the betatron amplitude. When the
synchrotron and betatron emittances are constant with
no dissipative damping force, i.e., ¥, =v,=0 (y =0), so
that particles execute a simple periodic betatron oscilla-
tion, we have S, =0 and C,=1 from Eq. (20) with the
self-consistent result that the right-hand side of Eq. (33)
vanishes. In a dissipative system with y,;7v .4 (Vo4 18
the damping rate of the synchrotron amplitude), howev-
er, we have the result that S0 and C,7#1 on an aver-
age over several revolutions. Then we obtain the impor-
tant result that electromagnetic fields can change the
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damping rates of synchrotron and betatron oscillations
due to synchro-betatron interactions in the dissipative
system.

We show the damping region of betatron oscillations in
the space (C,,S;) in the dissipative system. The space
(C,,8,) is rotated by mgq, around the origin to generate a
new space (C,S), where Eq. (33) can be rewritten as

Ag, b

<€x >9 SZ(C ASONS+Sy)—2y,4 - (38)
where

S, =sin(rg,) xz%". (39)

Then we obtain the damping region of the betatron oscil-
lations:

yde(z)

(40)

Next we consider the damping rate of synchrotron os-
cillations. The synchrotron emittance €, can be written
as

2

€= 082 T 4T,
A kB, cosd,

[cos(ds+ @)+ ¢ sing, —cosdg,]

(41)

where ¢, is the synchronous phase of the accelerating
field, and S, is the betatron function of the synchrotron
oscillations [8] written as

Bo=m—r (42)

where L is the circumference of the ring, v, the synchro-
tron tune,

Ny =y — 5 » (43)
Yo

and a,, is the momentum compaction factor. Taking
into account a damping rate y,,; due to the dissipative
force, the rate of change of the synchrotron emittance per
revolution averaged over several betatron oscillations be-
comes

( AEU >9=

(142t8, —C,) =2y 4€, - (44)

be,
2 ﬁO Vs
Therefore we obtain the damping region of the synchro-
tron oscillations:

BOVs

—1. 4
b 1 (45)

218, —C, <47y 4

X

As shown in Egs. (38) and (44), the rates of change of the
betatron and synchrotron emittances per revolution de-
pend on the quantmes a and b, which are determined by

5, A%, 43, BY, B (al,bas) and (b¢,b8®) obtained
from b, a‘f’, b$, a8, and b3. (See the Appendlx about the
expressions of these quantities.)
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Figure 1 shows the damping regions of the betatron
and synchrotron oscillations expressed in Egs. (40) and
(45) as hatched areas, while the other spaces are growing
regions. This figure indicates the case where the fraction-
al part of the betatron tune g, is negative, because the
synchro-betatron sum resonance is important, as de-
scribed below. The boundary line of the damping region
is a hyperbola for the betatron oscillations, while it is a
straight line for the synchrotron oscillations. The effects
of the dissipative damping rates y,; and y,, are exag-
gerated in Fig. 1 in order to clarify those effects; in prac-
tice the boundaries of the damping regions are in the
neighborhood of the oroken lines.

In the conservative system with y,;=v.,,=0, the
boundaries of the damping regions coincide with the bro-
ken lines. The particle takes a periodic motion around
the point (C,,S;)=(1,0) on the broken line, so that the
electromagnetic fields cannot change the synchrotron and
betatron emittances on an average over several revolu-
tions.

On the other hand in the dissipative system, the center

(a) Damping region of betatron oscillations.

S1

(b) Damping region of synchrotron oscillations.

FIG. 1. Damping regions of betatron and synchrotron oscilla-
tions in the space (C,,S,). (a) Damping region of betatron os-
cillations. (b) Damping region of synchrotron oscillations.
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point of the periodic motion is located at the point shift-
ed by the vector

yX—YG _ Yx_‘y
2 ’ 2

from the point (C,,S,)=(1,0) [see Eq. (20)]. The center
point deviates from the boundary line of the damping re-
gion for a more strongly damping oscillation between the
betatron and synchrotron oscillations, and vice versa.
The case for growing oscillations follows likewise. The
shift of the center point leads to the result that the damp-
ing rates change to

(AC,,AS )=

Z cotrg,

P
Yx=Y«~ |TIpFg (Yxd =Voa) » (46)
70=Ymi+ i%_‘_g (YXd_YOd)’ (47)

where
b

P=——=(Cy—AS,), 48
4S8( 0 0) ( )

__bT | &
2By, | e, | (49)
Co=cos(mg,) , (50)

and S is defined by Eq. (39). As shown in Egs. (46) and
(47), the system considered is not ruled by Robinson’s
theorem that y, +y, is constant, independent of any
electromagnetic field. The quantity C nearly equals uni-
ty for the synchro-betatron sum resonance, and usually
|A| << 1, with the result that C,—AS,>0. The quantity
S, is negative for synchro-betatron sum resonance, and
the quantity b is positive for a positive momentum com-
paction factor [see Egs. (35), (19), and (A7)]. Thus the
quantities P and Q have positive values. Therefore, Egs.
(46) and (47) indicate that electromagnetic fields have a
tendency to equalize the damping or growing rates of
synchrotron and betatron oscillations.

As shown in Egs. (33) and (44), the electromagnetic
fields have a large effect on the synchrotron and betatron
emittances as the values of t and T become large, i.e., the
fractional part of the betatron tune becomes small. This
is because the betatron modulation of the synchrotron os-
cillation depends on the previous betatron motions, so
that total effects from the past to the present become
larger as the fractional part of the betatron tune becomes
smaller.

When the deflecting field is used to excite the synchro-
betatron interactions, the deflecting field should be syn-
chronized with the accelerating field so that its frequency
is an integer or half-integer multiple of the frequency of
the accelerating field. When the deflecting field has an in-
teger times the frequency higher than the accelerating
field, the betatron tune should nearly equal an integer res-
onance. Conversely, when the deflecting field has a half-
integer times the frequency higher than the accelerating
field, equalization of the damping rates can be realized
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when the betatron tune nearly equals a half-integer reso-
nance and when the accelerating field has an odd har-
monic number. Furthermore the synchronous phase of
the deflecting field should be set about a zero-crossing
phase of the magnetic field in any case.

IV. PARTICLE SIMULATION

The factors S| and C;, which determine the effect of
the electromagnetic field on the behavior of particles,
cannot be obtained analytically, so that a particle simula-
tion is useful to understand the phenomenon exactly. As
an example, particle simulation was applied to the case of
the synchro-betatron interactions being induced by
deflecting fields. We show how the damping rates of the
synchrotron and betatron oscillations depend on the
deflecting fields.

A. Algorithm

The algorithm for the particle simulation is briefly
summarized below. It can be derived from the canonical
equations described with the Hamiltonian except for the
dissipative terms [7]. Suppose that an accelerating cavity
and a deflecting cavity are installed in a storage ring.
The change of each physical quantity is expressed with a
A sign before the variable as in the following.

(1) At the accelerating cavity,

A¢=W(§x-—nym8, 51)
AS=u sin(,, + ¢+ A0, ) , (52)
Ax=—nA3, , (53)
Ap,=—P, A8, . (54)

(2) At the deflecting cavity,

k kn o}
Ap=—"1"—({Ex —my)AS+ 1— b, , (55)
BB} B3 Bi | "
A8=§%(x +78)sin(y+o+A0, ), (56)
Ax=—748, , (57)
Ap,=—P, A5, + Py . (58)
(3) At the other elements,
X =Myx; +Mppp(1-27,), (59
Pxa=Myx  +Myp,(1-2y,,), (60)
_ 2whn,
A¢_—B(2)—61 , (61)
82=81(1—"2’y0d) > (62)

where ¢ is the rf phase displacement from the synchro-
nous phase, J is the relative horizontal deviation, 7 is the
horizontal dispersion , and

t=a,n+B,P,, P,=p%L

m PO gs
Aap:% 1- 282 ’
0 Bsvo
A6 =X 1——— (P, x—7p,)
B Bwh| T *

where v =gV /E (q is the electric charge of particle, V is
the rf voltage, and E |, is the beam energy), and

v
¢H=Bo%cos(¢sd+¢+w,) L Va=kor

where ¢, is the synchronous phase of an accelerating
voltage, ¢, is the synchronous phase of a deflecting volt-
age, M, M,,, M,,, and M,, are components of the
second-order transfer matrix for the elements, 4 is the
harmonic number of the accelerating frequency, and the
subscripts 1 and 2 in x, X,, P,, Px2» 05, and 8, indicate
quantities at the entrance and exit positions of the ele-
ments.

B. Simulation results and discussions

Here we exemplify a high-energy electron beam accom-
panied by radiation damping as a dissipative system. The
deflecting field has a half-integer times the frequency
higher than the accelerating field, and the betatron tune
nearly equals a half-integer resonance. The parameters
used in the simulation are listed in Table I, and Fig. 2
shows how the deflecting voltage ¥V affects the relation
between the damping rates of synchrotron and betatron
oscillations, ¥, and y,, and the damping partition num-
ber of the betatron oscillations, J,. When V=0, the
well-known relations [9]

YXCIJX > 7/(76(3—JX

hold which follow Robinson’s theorem that the sum
¥x T 7. is constant. However, these damping rates under
the deflecting field disobey Robinson’s theorem when the
betatron tune is on the synchro-betatron sum resonance
or in its neighborhood. The simulation results shown in

TABLE I. Parameters for particle simulation.

Particle Electron
Beam energy E, 600 MeV
Betatron tune Vi 1.496
Synchrotron tune vy 3.85x10°°
Harmonic number h 7
Momentum compac- a,, 0.2
tion factor
Twiss parameters (at a, —0.8
accelerating cavity) By 4 m
(at deflecting cavity) a, —0.5

B. 3m
Accelerating voltage V 40 kV
Accelerating frequency 150 MHz
Deflecting frequency 525 MHz
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Fig. 2 support our theory that the deflecting field has a
tendency to equalize the damping rates of synchrotron
and betatron oscillations. When the damping partition
number J, of the betatron oscillations is less than 2, the
radiation damping rate of the betatron oscillations can be
increased by a factor of 3/(2J,), which means that the
equilibrium emittance of the betatron oscillations can be
lowered by a factor of 2J, /3.

As mentioned above, strong synchro-betatron interac-
tions also can be induced by the horizontal dispersion at
the accelerating cavity. We investigated the equalization
effect of damping rates of synchrotron and betatron oscil-
lations in the cases of the deflecting field and the horizon-
tal dispersion at the accelerating cavity. We evaluated
the equalization effect by the following index:

— YxVo

(63)
YxdY od

Figures 3(a) and 3(b) show the betatron tune dependence
of the index F under synchro-betatron interactions due to
the deflecting field and the horizontal dispersion at the
accelerating cavity, respectively, with the unperturbed
dissipative damping rates y,;=0.5X10"> / turn and
Yod =2.5X107° / turn. The index F has a value of 1.8
for the complete equalization. The betatron tune is set

3

10%, (per turn)

(b) Damping rate of synchrotron oscillations.

FIG. 2. Effect of deflecting voltage ¥y on the betatron and
synchrotron oscillations. (a) Damping rate of betatron oscilla-
tions. (b) Damping rate of synchrotron oscillations.
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near a half-integer for the deflecting field, although it can
be set near an integer as described before, while it should
be set near an integer for the horizontal dispersion at the
accelerating cavity. Figure 3(a) shows tune dependencies
of the index F with the deflecting voltages V5 =5, 10, 20,
and 40 kV. The sharp spikes at v, =1.489 and 1.498 for
V=40 kV correspond to higher-order synchro-betatron
resonances v, +3v,=1.5 and 2v, +v;=3.0, respectively.
In Fig. 3(b), the solid and broken lines indicate the results
with the horizontal dispersion at the accelerating cavity
n=1 and 5 m, respectively. In both cases shown in Figs.
3(a) and 3(b), the index F increases as the betatron tune
approaches the integer according to our theory. Howev-
er, the index F decreases remarkably when the betatron
tune continues to approach an integer or half-integer
beyond the synchro-betatron resonance. The remarkable
decrease of the index F seems to be due to the synchro-
tron modulation of the betatron oscillations not con-
sidered in our theory. The synchrotron modulation of
betatron motions is induced either by a sudden change of
the closed orbit due to a longitudinal kick in an accelerat-
ing field with a finite horizontal dispersion, or by a
change of the transverse kick due to an rf phase shift of a

2.0
[ Complete Equalization Level
) X3 S A
1.6F
. !
1.4
1.2F
1.0E n a1 I
1.485 1.490 1.495 1.500
Tune v
x
(a) Case of deflecting field.
2.0
[ Complete Equalization Level
1.8 -__./, .................... . U
1.6 . HIE
m [ =m
1.4 5 N=5m ",' “'.
12f 5
rolbo ==t N
1.985 1.990 1.995 2.000
Tune v
X

(b) Case of horizontal dispersion
at the accelerating cavity.

FIG. 3. Tune dependencies of the index F under synchro-
betatron interactions due to deflecting field and horizontal
dispersion at the accelerating cavity. (a) Case of deflecting field.
(b) Case of horizontal dispersion at the accelerating cavity.
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deflecting field where the rf phase shift is caused by the
synchrotron motion. Independently of the theory
presented in this paper, the particles’ motions can be al-
most strictly analyzed using Egs. (51)-(62) in the numeri-
cal simulation, so that the numerical simulation contains
the effects of synchrotron modulation of betatron
motions.

In the case of deflecting field, curves of 20 and 40 kV
vanish when the betatron tune is near the value of 1.5.
These indicate beam instabilities due to the synchrotron
modulation of betatron motions.

We can see the following points from these results. In
the case of the synchro-betatron resonance due to the
horizontal dispersion at the accelerating cavity, the beta-
tron tune is restricted within the narrow tuning width of
1X 107 unless the horizontal dispersion has a large
value over about 5 m at the accelerating cavity. On the
other hand, when using deflecting fields, the betatron
tune need not be so strictly set on the synchro-betatron
sum resonance; it works even in its neighborhood, so that
the tuning width of the betatron tune is as broad as
1X1072%

We adopted radiation damping as an example of a dis-
sipative system. Equations (59) and (60) show that the al-
gorithm contains only damping rates as information
about the dissipative system. Therefore, the algorithm
does not depend on the kind of dissipative system, and
then the results of the particle simulation do not depend
on the damping mechanism, so that they are applicable to
any dissipative system.

The synchro-betatron sum resonance induces a push-
pull beating wave between synchrotron and betatron os-
cillations, while keeping the total oscillation energy.
Therefore the reciprocal modulations of the synchrotron
and betatron oscillations are moderate and not so harm-
ful [4], while the synchro-betatron difference resonance
leads to growing instability with the result of beam dis-
ruption. Then the strong synchro-betatron interactions
described in this paper can be used with no problem.

The equalization of longitudinal and transverse cooling
rates can be applied in several cooling methods: (1) syn-
chrotron radiation cooling, (2) stochastic cooling of a
bunched beam, and (3) laser cooling of a relativistic ion
beam. For (1), a synchrotron radiation brightness can be
enhanced by a factor of 1.5 for a large electron storage
ring as a low emittance synchrotron radiation source
with the damping partition number of the horizontal be-
tatron oscillation J, of unity. For (2), longitudinal and
transverse stochastic cooling can be simultaneously exe-
cuted by using either a longitudinal or a transverse cool-
ing system. Generally, the transverse beam cooling rate
is lower than the longitudinal one, and thus the total
cooling time can be reduced when using double-cooling
systems for longitudinal and transverse directions. For
(3), conventional laser cooling of a relativistic ion beam is
possible only in the longitudinal direction, while it is
practically impossible in the transverse direction. This is
because a large enough transverse interaction region be-
tween the ion and laser beams cannot be obtained, and
because fluctuations of particle momentum due to ran-
dom directions of spontaneous emission contribute to sto-
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chastic diffusion, leading to transverse heating in a longi-
tudinal cooling system. Equalization of longitudinal and
transverse cooling rates by strong synchro-betatron in-
teraction makes transverse and longitudinal laser cooling
possible for a relativistic ion beam in a bunching style.

V. CONCLUSIONS

From theoretical investigation and particle simulation,
we showed that the damping rates of synchrotron and be-
tatron oscillations can be changed due to a betatron
modulation of synchrotron oscillations generated by
synchro-betatron interactions so as to have a tendency to
equal each other in a dissipative system. The betatron
modulation of synchrotron oscillations occurs strongly
on the synchro-betatron sum resonance or in its neigh-
borhood by either a longitudinal kick due to an rf electric
field in an accelerating cavity with a finite horizontal
dispersion, or a transverse kick due to an rf magnetic
field in a deflecting cavity. The tuning width of the beta-
tron tune permitting equalization of damping rates is
broader for the transverse kick than the longitudinal
kick.

The equalization of longitudinal and transverse beam-
cooling rates can be applied to several cooling methods.
In particular, for radiation cooling, the synchrotron radi-
ation brightness can be enhanced by a factor of 1.5 for a
large electron storage ring. This equalizing phenomenon
permits simultaneous stochastic cooling in longitudinal
and transverse directions in a longitudinal or transverse
cooling system. Moreover, longitudinal and transverse
laser cooling becomes possible for a relativistic ion beam.

APPENDIX: HAMILTONIAN

Suppose a synchro-betatron interactions are induced
by either a longitudinal kick due to an rf electric field in
an accelerating cavity with a finite horizontal dispersion,
or a transverse kick due to an rf magnetic field in a
deflecting cavity.

The system is composed of static magnetic fields and rf
electromagnetic fields, including error magnetic fields
generating a closed-orbit distortion. Let us consider the
case with B,=1, for simplicity. The Hamiltonian of the
system can be written as

H(x,p,,0,8)=H, +H +H+H,+H, , (A1)
Pi K., *
=X 4 2 x4+ —2x° A2
Hy, ==+ X (A2)
dP dP
_ n Xc Ab 2
= X 22 (14X
H.=X PR 5+ s k8 |+ 2K(l kX)
dP
——1 | 1s2+Xx.5 A3
ds |2 L e (A3)
a aE\S
H =—E, (cos¥,+ V¥, sindg, )—Xﬁcoswd
B2
—PXE'xcosWd+Txcosz‘Pd , (A4)
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(kX —9)

— 2 A5
Hy=="17%) Px E cosW,)?, (AS5)
(1+«kX) 2
=T (Py—E cos¥,)?, (A6)
27 3(1+8)° X xCOSY g4
where X=x+78+X, (horizontal  displacement),

Py=p,+P,8+Py, X, is the transverse displacement of
a closed orbit, PXc is the conjugate momentum of X, and

3’B
ax?

-1
o ° Bop

b

where « is the curvature of a reference orbit, Byp is the
magnetic rigidity, (9B /3X), is the quadrupole magnetic
field at the reference orbit, (3%B /3X 2)0 is the sextupole
magnetic field at the reference orbit, Ab=AB /Byp (AB
is the error magnetic field in a vertical direction), and

Wa=¢sa+¢+A9x ’ ‘I’ =¢sd+¢+Aex ’

eE,
E.= kEO E= kEo ’ E"_kEo’

where E, is the longitudinal electric field of the accelerat-
ing field, E; is the longitudinal electric field of the
deflecting field, E, is the transverse electric field of the
deflecting field, E is the beam energy, and k is the wave
number of the electromagnetic field at the point s. Using
the above Hamiltonian, we obtain

(A7)

3E, 3 _arp

§E cos¥, o+ ax B,

at=r sin¥,0 | , (A8)

4473
E. .
b¢=r ——sm‘lldo-nEacos\I/ao , (A9)
B
=r[(l—Kn)Ab+)\.0'qXC+KP,,PXC]
ax
+r—[(1-—m1)PXc—P,7KXC]
X
A a,
+r gﬁsin\v,,o—B—Excosw,,o +a%5, (A10)
b= BL[KPX —(1—kn)Py ]
+r Ex—cos\l‘ao—ﬁﬁsin‘l’ao +b%5, (Al
where
a
a®=ragn?*+rP, Kp,]+zB—"(1—m) (A12)
Pn
b3¥®=—2r—"(1—«n), (A13)
B
a0 ¢sa+¢’ \I/dO ¢sd+¢’ (A14)
oF,
1
E=q X . (A15)
A=k, A=k—£, (A16)
1=K ¢TF%,

and r is the betatron amplitude.
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(a) Damping region of betatron oscillations.

Si

(b) Damping region of synchrotron oscillations.

FIG. 1. Damping regions of betatron and synchrotron oscilla-
tions in the space (C;,S,). (a) Damping region of betatron os-
cillations. (b) Damping region of synchrotron oscillations.



